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Abstract

This supplement to Lleras et al. [2016] examines equilibrium bidding behavior in first
price sealed bid auctions when bidders have Asymmetric Gain-Loss Preferences. We
find that equilibrium bidding strategies are higher than the corresponding strategies
when bidders are risk-neutral. As such, the predictions are more closely aligned with
experimental findings. In addition we examine qualitative and quantitative notions
of comparative reference dependence.

1 Application to First Price Auctions

Experimental data shows systematic overbidding compared to the theoretical predictions

of Nash Equilibrium with risk neutral bidders [Coppinger et al., 1980, Cox et al., 1988].

In this note, we aim to explain the empirically observed deviation from the Nash solution

by appealing to bidders who have asymmetric gain-loss preferences. Lange and Ratan

[2010] study the link between overbidding and reference dependence in greater depth

than we do here. They examine an auction environment in which bidders have Kőzsegi

and Rabin [2006] (KR) type reference dependence. However, to tractably tailor KR to

the application they must make a number of simplifying assumptions.1 Most importantly,

they do not characterize the reference point as fixed point. Namely, they assume (as we

do here), that for fixed bidding strategies of the other bidders, the reference point given
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bid b, is simply the expected utility of the auction given, b. So, in equilibrium, each bid is

associated with a reference point and the collection of reference points affect the optimal

bid, but which bid is optimal does not affect the individual reference points.

In spirit, Lange and Ratan [2010] are using AGL preferences (albeit in a more com-

plicated multi-dimensional environment). Thus, it is not surprising that we find similar

results. As such, this application is not so much intended to resolve the issue of overbid-

ding in sealed bid auctions, as it is to reinforce the tractability and simplicity of the AGL

representation when imported into larger models.

1.1 The Auction Environment

A single seller is selling an indivisible good. There are N potential buyers, represented by

i= {1, . . . , N}. Each buyer has a private value for the good, θi. Each θi is independently

drawn from [θ, θ] ⊂ R+, with cumulative distribution function F . Denote the first deriva-

tive of the cumulative distribution function as f . The distribution is commonly known to

all buyers. Furthermore, let G(θ) denote the probability of θ being the highest type out

of N bidders, that is F (θ)N−1.

Bidders have AGL preferences over bid profiles, b : [θ, θ]N → RN , and a linear utility

index Ui(·) defined over outcomes:

Ui(b) =

{
θi − pi(b) if the bidder wins the item and pays pi(b),

−pi(b) if the bidder does not win the item and pays pi(b). (1.1)

Note that without specifying the assignment rules of the auction, we do not have a full

characterization of preference, as the mapping from bid profiles to equation (1.1) is unde-

fined. Therefore we are abusing notation in assuming that Ui is defined over bid-functions,

when it is actually defined over the composition of bid functions and, the as of yet unspec-

ified, assignment rule. Given an assignment rule, each bid function constitutes a state

contingent contract. In each state (a resolution of the type-space) the bidding profile

specifies the bids, and the assignment rule specifies the outcomes to each bidder accord-

ingly.

Ex-ante, an each bidder chooses as bid so as to maximize maximizes her expected AGL

utility. The reference point, as discussed in the introduction of Lleras et al. [2016], is the

expectation of this “first-order” utility with respect to the bidders’ beliefs, µi. However,

because we are interested pure strategy, monotone, symmetric Bayes-Nash equilibria,

where the bidder with the highest valuation always wins the auction, we can assume
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without loss of generality that a bidder’s belief that she is going to win is equivalent to

her belief that she is the bidder with the highest value, as given by Bayes’ rule and the

commonly known distribution over types, F .

Therefore, the expected utility of bidder i can be written as:

EF (θ−i)[Ui(b)] + λ

∫
θ−i:θi<maxj θj

(
EF (θ−i)[Ui(b)]− U(b)

)
dF (θ−i). (1.2)

This is the AGL-functional, defined in Lleras et al. [2016], and adapted to the auction

setting. The first term is the expected utility and the second term is the expected gain-

loss utility. Given the strategy of all other bidders, bidder i seeks to maximize (1.2) by

choosing bi (and hence choosing b subject to the restrictions of the other bidders).

Although a bidder’s reference point is determined by the equilibrium strategies, the

reference point itself is not an equilibrium condition (i.e., given fixed strategies of other

bidders). Fixing the opponents strategies and the assignment rule, the choice of a bid is

analogous to the choice from a set of acts. The acts pay according to the assignment rule

and the probability of each state is determined by the strategies of other bidders, and the

distribution over the type space. Each act carries with it a unique reference point (the

expected first order utility) irrespective of which act is chosen.

As such we can employ the standard techniques in auction theory to solve for equi-

librium bidding behavior. This, of course, would not be possible if the reference point

was not uniquely identified, or depended on equilibrium conditions. Given the later, it

would require that bidder i not only maximize her expected (reference dependent) utility

subject to other bidders strategies, but also with respect to her own choice. In place of the

relatively straightforward optimization problem, we would be instead tasked with finding

a fixed point.

1.2 Equilibrium Bidding Functions

Assume that the seller implements a first price auction. Each buyer, i, makes a bid bi.

Then buyer j = argmax
i
{bi} will receive the item, and pay her own bid, bi; all other bidder

pay nothing. Each bidder maximizes her expected utility, given by (1.2), according to her

beliefs over other players strategies and types.

Theorem 1. The unique symmetric monotone equilibrium is for a bidder of type θ to bid
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according to

bAGL(θ) =

∫ θ
θ
g(x)xdx

G(θ) [1 + λ(1−G(θ))]
+

∫ θ
θ
g(x)x (λ (1− 2G(x))) dx

G(θ) [1 + λ(1−G(θ))]
.

Moreover, if λ ∈ (−1, 0) then there is a θ̂ such that for all θ ≥ θ̂, θ will overbid.

Denote the risk neutral SEU optimal bid of type θ as in a first price auction as bRN(θ).

Recall that symmetric bidding function is given by bRN(θ) =
∫ θ
θ g(x)xdx

G(θ)
. To see that there

exists some threshold, above which all types will bid higher than the RNNE, note that

when λ ∈ (−1, 0), the first term is larger than bRN for all θ. Thus, all bidders for which the

second term is positive will unambiguously bid larger than the RNNE. Basic continuity

arguments suffice to show that this set exists and is nontrivial.

The effect here is due to the asymmetry (between gains and losses) of the preferences.

It is the relatively large disutility from not meeting the reference point that motivates

overbidding. Increasing the bid has two opposing effects on the reference point (and

therefore on expected utility). First, as the bid increases, the expected payment is in-

creasing. Thus, increasing the bid reduces profit. On the other hand, as the bid increases

so does the bidder’s probability of winning. Higher type bidders have a higher reference

point, and so will have a tendency to overbid by more. The extra cost associated with

the higher bid is, so to speak, payment to cover the now increased cost of losing.

We now turn to the mathematically simple environment where bidders types are uni-

formly distributed on the [0,1] interval. From these examples we can extract more intuition

about the optimal bidding strategies. Additionally, most of the experimental evidence of

overbidding arises from experiments where types are uniformly distributed.

With this distribution in mind, we can greatly simplify the bidding functions.

bRN(θ) =
N − 1

N
θ, and, bAGL(θ) = bRN(θ)


(

1 + λ
[
1− 2NθN−1

(2N−1)

])
[1 + λ(1− θN−1)]

 .
From this we obtain the following result:

Corollary 2. When the type space is uniformly distributed and λ ∈ (−1, 0), the optimal

bid is weakly larger than bRN(θ) for all types, and strictly larger for θ > 0.

Proof. This follows directly from setting G(θ) = θN−1, and verifying that the bracketed

term in the simplified expression is always weakly greater than 1. �
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(a) N = 3. (b) N = 10.

Figure 1: Optimal Bids In a First Price Auction, λ = −3
4

By specifying the distribution, we can sign the difference in the optimal bid; AGL type

preference can help to explain the persistence of overbidding in auctions. Figure 1 plots

the optimal bids given λ = −3
4
, in auctions with 3 and 10 bidders. It is evident from the

graph that the magnitude by which a type overbids is monotonically increasing in type.

Further, the overbidding diminishes as the number of bidders increases –the reference

effect is smaller as the probability of winning (and so, the reference point) is decreasing

in the number of bidders.

1.3 Proof of Theorem 1

We utilize the fact that we are searching for a symmetric and monotone equilibrium.

Symmetry dictates the optimal bid function is invertible. Monotonicity dictates, the

probability of bidder i winning the auction is G(b−1(bi)).

A loss-biased bidder will never bid above her type. This can be seen by noting that

a bid, bi > θi is strictly dominated by bi − ε for some small enough ε. This is because

lowering the bid reduces the likelihood of a losing state (winning the auction and paying

more than her type –a strictly negative payoff) and weakly increase the payoff in all states.

Therefore, the reference point for any equilibrium bidding strategy is bounded weakly

between 0 and the difference between the bidders type and her bid. Thus, we know states

in which the bidder loses the auction are considered losses and states where the she wins

the auction are considered gains. Using these facts we can write the bidder’s maximization

problem (of equation (1.2))
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max
bi

G(b−1(bi)) (θi − bi) + λ
(
1−G(b−1(bi))

) (
G(b−1(bi)) (θi − bi)

)
The first order condition is:

G(b−1(bi))+G(b−1(bi))λ
(
1−G(b−1(bi))

)
=
(
1 +

[
λ
(
1− 2G(b−1(bi))

)]) g(b−1(bi))

b′(b−1(bi))
(θi − bi)

In equilibrium, we know that players will play monotonic and symmetric strategies. There-

fore, each player’s bid is a function of her type: bi = b(θi). Further, b−1(bi) = θi. Finally,

we can drop the subscript i:

b′(θ)G(θ) + b′(θ)G(θ)λ (1−G(θ)) = (1 + [λ (1− 2G(θ))]) g(θ) (θ − b(θ))

Subtracting the last term from both sides and rearranging

b′(θ)G(θ) + b(θ)g(θ) + b′(θ)G(θ)λ (1−G(θ)) + b(θ) [λ (1− 2G(θ))] g(θ)

=

(1 + [λ (1− 2G(θ))]) g(θ)θ

We can rewrite the top line by noting that it is, in fact, a differential equation

d

dθ
[G(θ)b(θ) +G(θ)b(θ)(1−G(θ))λ] = (1 + [λ (1− 2G(θ))]) g(θ)θ

Integrating both sides:∫ θ

θ

d

dx
[G(x)b(x) +G(x)b(x)(1−G(x))λ] dx =

∫ θ

θ

(1 + [λ (1− 2G(x))]) g(x)xdx

Using the boundary condition given that G(θ) = 0,

[G(θ)b(θ) +G(θ)b(θ)(1−G(θ))]λ =

∫ θ

θ

(1 + [λ (1− 2G(x))]) g(x)xdx

Finally, we can solve for the bid function

b(θ) =

∫ θ
θ

(1 + [λ (1− 2G(x))]) g(x)xdx

G(θ) [1 + (1−G(θ))λ]

We can rewrite this as the desired function.

bI(θ) =

∫ θ
θ
g(x)xdx

G(θ) [1 + (1−G(θ))λ]
+

∫ θ
θ
g(x)x (λ (1− 2G(x))) dx

G(θ) [1 + (1−G(θ))λ]

It remains to show that there is a θ̂ such that for all θ ≥ θ̂, θ will overbid. Since the

first term of bI is always weakly larger than bRN is suffices to show that there is θ̂ such

that for all θ ≥ θ̂ ∫ θ
θ
g(x)x (λ (1− 2G(x))) dx

G(θ) [1 + (1−G(θ))λ]
≥ 0 (1.3)

We will show that for θ̄ the above holds strictly: the result then follows from the continuity

of the bidding function. At θ̄, the denominator of (1.3) is 1 we need only show the

numerator is strictly positive.
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Through integration by parts, we obtain the following identity:

G2(x)x|θ̄θ −
∫ θ̄

θ

G2(x)dx−
∫ θ̄

θ

xg(x)G(x)dx =

∫ θ̄

θ

xg(x)G(x)dx

which allows us to rewrite the numerator of (1.3) as

λ
[ ∫ θ̄

θ

g(x)xdx−G2(x)x|θ̄θ +

∫ θ̄

θ

G2(x)dx
]

Or, denoting µG as the expectation according to the distribution G,

λ
[
µG − θ̄ +

∫ θ̄

θ

G2(x)dx
]

And so, under the assumption that λ < 0, it suffices to show that∫ θ̄

θ

G2(x)dx < θ̄ − µG (1.4)

It is a well known consequence of Tonelli’s Theorem that we can write the expectation of

a non-negative random variable in terms of its CDF as

µG =

∫ ∞
0

1−G(x)dx

which, given the support of F (x), can be re-written as

µG =

∫ θ̄

0

1−G(x)dx = θ̄ −
∫ θ̄

θ

G(x)dx

So, since G(θ) ≤ 1 for all θ we know∫ θ̄

θ

G2(x)dx <

∫ θ̄

θ

G(x)dx = θ̄ − µG

satisfying (1.4) and thus, proving the claim. �

2 Comparative Statics

This section capitalizes on the connection to uncertainty attitudes in order to advance

comparative statics results relating behavior to elements of the AGL representation. A

natural measure for the degree and direction of reference effects is the gap between ef

and cf , the hedge and the certainty equivalent. In the standard SEU model, ef and cf

are the same, so the SEU model is the baseline case for reference effects.

Definition 1. Let % be a preference over F . Say % is gain-biased if for all f ∈ F ,

cf % ef . Say % is loss-biased if for all f ∈ F , ef % cf .

Remark 1. An AGL decision maker is gain-biased (respectively, loss-biased) if and only

if she is uncertainty seeking (resp., uncertainty averse) if and only if λ ≥ 0. (resp., λ ≤ 0).
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Remark 1 follows immediately from the observation that Eµ[f ] = ef and examination

of the representing functionals.2 This observation establishes a clear connection between

the idea of “loss aversion” that has been prevalent since Prospect Theory, and uncertainty

aversion.

If, however, we want to be able to compare two DM’s degree of reference dependence

we want to disentangle reference dependence from beliefs (which determine both cf and

ef ). To do this, we define f ∨ f̄ , the join of a balanced pair (f, f̄), as the act that gives

the DM the best outcome between f and f̄ for each s ∈ S.

Definition 2. Given any balanced pair (f, f̄), define the act f ∨ f̄ , the join of (f, f̄) as

(f ∨ f̄)(s) =

{
f(s) if f(s) ≥ f̄(s)

f̄(s) if f̄(s) > f(s)
.

From the AGL representation, gain-loss utility depends on how much the act deviates

state by state from ef . f ∨ f̄ provides the absolute value of the state by state deviations of

f from ef . To determine the assessment of these deviations for each DM, we consider the

hedge of the join, ef∨f̄ . Then, to capture reference-dependence behaviorally across DMs,

we focus on acts that have the same hedge: if acts have different hedges, the reference

effects can be confounded by the beliefs.

The intuition behind our comparative notion of “more loss biased” is that the DM

prefers an act f with smaller deviations from ef because the expected losses are smaller.

Conversely, a DM with gain-bias prefers acts with larger deviations. Since we want to

consider acts that have the same hedge, the comparative notions of “more gain-biased”

and “more loss-biased” depends on a possibly different act for each DM: f for DM 1 and

g for DM 2. Then the fact that ef∨f̄ is larger than eg∨ḡ provides a sufficient information

to conclude that DM 1 is willing to pay more for f than DM 2 is willing to pay for g. We

use the notation where eif denotes the hedge of f for DM i.

Definition 3. Given two preference orders %1 and %2, say that %1 is more gain-biased

than %2 (and %2 is more loss-biased than %1) if for any f, g with e1
f = e2

g and e1
f∨f̄ ≥ e2

g∨ḡ

for i = 1, 2, then for any c ∈ Fc, c %1 f implies c %2 g and c �1 f implies c �2 g.

The comparative notion of “more gain bias” or “more loss bias” is similar to the notion

of uncertainty aversion in Ghirardato and Marinacci [2002]. For gain-loss preference the

implication of comparative loss bias is the same as comparative uncertainty aversion,

although in this case it holds only for acts that have the same hedge. This provides a

behavioral way to compare reference effects across DMs.

2See Proposition A.5 in Lleras et al. [2016].
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Theorem 3. Let %i admit an AGL representation given by (µi, λi) for i = 1, 2. Then %1

is more gain-biased than %2 if and only if λ1 ≥ λ2.

When µ1 = µ2, we can say more than Theorem 3. In this context, DM 1 being

more gain biased is equivalent to f %2 c implies f %1 c, for all acts f and constant acts

c. Even further, if in addition both DM’s are gain biased (or loss biased), then these

equivalences can be extended to include C2 ⊆ C1 for the equivalent Maxmin/Maxmax

representation from Theorem 3.1 in Lleras et al. [2016]. These addition equivalences stem

from the fact that when DMs have the same belief, then for any f ∈ F , e1
f = e2

f : loss

bias is equivalent to the comparative notion of ambiguity aversion from Ghirardato and

Marinacci [2002]. This further implies that whenever %i is gain-biased or loss-biased for

both DMs, the notion of loss bias is consistent with the representation of comparative

ambiguity aversion derived from Gilboa and Schmeidler [1989] (that the more ambiguity

averse DM should have a larger set of priors).

These comparative statics results establish an unexplored link between the absolute

and comparative notions of gain or loss bias, and existing notions of uncertainty aversion

which is worth further exploring. The initial motivation for studying uncertainty was due

to the Ellsberg [1961] idea that DMs are not able to formulate unique probabilities over

uncertain events. Many models with multiple priors have been developed to capture what

is considered as “Ellsbergian behavior”. Nonetheless, even if the DM is able to form a

unique prior, having gain-loss considerations can appear to contaminate her prior in a

way that gives rise to behavior embodied by some multiple priors model. Hence, for AGL

preference a probabilistically sophisticated DM can appear to have multiple priors due to

gain-loss asymmetry.

2.1 Proof of Theorem 3

Use the notation that superscripts denote the DM, e.g, eif is the hedge of f for DM i.

(i) ⇒ (ii). Let %1 be more gain-biased than %2. Consider any f, g ∈ F such that

e1
f = e2

g and e1
f∨f̄ = e2

g∨ḡ. So, by Proposition ??, Eµ1 [f ∨ f̄ ] = Eµ1 [g ∨ ḡ]. Now observe, by

definition f ∨ f̄ = ef + |f − ef |:

Eµ1 [e1
f + |f − e1

f |] = Eµ1 [e2
g + |g − e2

g|].

Since, e1
f = e2

g, this implies

Eµ1 [|f − e1
f |] = Eµ2 [|g − e2

g|]. (2.1)
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Suppose further, g %2 c for any c ∈ Fc, implies that f %1 c. Clearly, this is true if and

only if V1(f) ≥ V2(g). We can write V1(f) ≥ V2(g) as defined in (??) as,

Eµ1 [f ] +
λ1

2
Eµ1 [|f − Eµ1 [f ]|] ≥

Eµ2 [g] +
λ2

2
Eµ2 [|g − Eµ2 [g]|].

Canceling according to (2.1) and Eµ1 [f ] = e1
f = e2

g = Eµ2 [g] we see λ1 ≥ λ2.

(ii) ⇒ (i). Let λ1 ≥ λ2. Let f, g ∈ F be such that e1
f = e2

g, and e1
f∨f̄ ≥ e2

g∨ḡ. Suppose

for some c ∈ Fc, g %2 c. Therefore, using the associate given by Proposition ??,

V (g) = e2
g +

λ2

2
Eµ2 [|g − e2

g]|] ≥ c.

Since e1
f∨f̄ %i e

2
g∨ḡ, Eµ1 [|f − e1

f |] = Eµ2 [|g − e2
g|] by the same logic of (2.1). So,

V (f) = e1
f +

λ1

2
Eµ1 [|f − e1

f |]

≥ e2
g +

λ2

2
Eµ2 [|g − e2

g|]

= V (g)

Therefore V (f) ≥ c, as desired. �
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